حل سینماتیک وارون روبات‌های فرافزونه‌ای با استفاده از شبکه عصبی موجکی

Authors

  • سید علی‌اکبر صفوی دانشیار دانشکده مهندسی برق و کامپیوتر، دانشگاه شیراز
  • محمدامین نعمت‌اللهی دانشجوی دکتری دانشکده مهندسی مکانیک، دانشگاه شیراز
  • محمدرحیم همتیان دانشیار دانشکده مهندسی مکانیک، دانشگاه شیراز
  • محمدعلی حاج‌عباسی استادیار بخش مهندسی مکانیک، دانشکده فنی، دانشگاه شهید باهنر کرمان
Abstract:

This article doesn't have abstract

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش‌بینی تراز آب دریاچه ارومیه با استفاده از روش‌های سری زمانی، شبکه عصبی مصنوعی و شبکه عصبی- موجکی

دریاچه ارومیه دومین دریاچه شور جهان است و با توجه به معیارهای اجتماعی- اقتصادی و زیست محیطی نقش مهمی در منطقه شمال­غرب ایران دارد که در سالهای اخیر با مشکلاتی مواجه شده است و به دلیل خشکسالی، استفاده بیش از حد آب­های سطحی و ساخت سدها تراز سطح آب آن کاهش یافته است. یکی از فاکتورهای مهم که در مدیریت صحیح در هر زمینه­ای، تأثیر دارد، داشتن یک دید و نگرش مناسب از اتفاقات آینده در آن زمینه...

full text

شبیه‌سازی رواناب با استفاده از شبکه عصبی- موجکی (مطالعه‌ی موردی: حوضه‌‌ی آبخیز رود خِرسان3)

برآورد، پیش­بینی و مدیریت رواناب همواره مورد توجه پژوهشگران بوده است؛ لذا با به کارگیری روشهای متداول و مرسوم هر دوره، اقدام به برآورد این پدیده به ظاهر زیانبار نموده اند که متأسفانه به دلیل پیچیدگی رابطه­ی بین بارش و رواناب، و غیر خطی بودن این رابطه، نتایج خیلی دقیقی را به دست نمی­دادند. امروزه، پیشرفت علم و توسعه­ی روشهای نوین در همه­ی ابعاد علمی، امیدواری خوبی را در زمینه­ی شناخت و حل چنین ر...

full text

الگوی جدید بارش- رواناب حوضه آبریز هلیل رود با استفاده از مدل هیبرید شبکه عصبی- موجکی

برآورد سیلاب و مدیریت آن از دیرباز مورد توجه کارشناسان و مدیران علوم محیطی بوده است. برای این امر روش‌‌های بسیاری وجود دارد که یکی از چشم‌گیرترین آن‌‌ها استفاده از شبکه‌‌های عصبی مصنوعی است. در این تحقیق، مدل بارش- رواناب حوضه آبریز رودخانه هلیل رود در جنوب‌شرق ایران ارائه شده است. ظهور تئوری‌های توانمند مانند منطق فازی و شبکه‌‌های عصبی مصنوعی(ANN)، الگوریتم ژنتیک و موجک تحولی عظیم در تحلیل رفت...

full text

پیش‌بینی خشکسالی با استفاده از الگوریتم ژنتیک و مدل ترکیبی شبکه عصبی- موجکی

خشکسالی به‌عنوان یکی از مهم‌ترین بلایای طبیعی است که ممکن است در هر رژیم آب و هوایی اتفاق بیفتد. از آنجا که وقوع خشکسالی اجتناب ناپذیر است، بنابراین شناخت آن به‌منظور مدیریت بهینه منابع آب، از اهمیت بسزایی برخوردار است. از مؤثرترین عوامل در تدوین طرحهای مقابله با خشکسالی و مدیریت آن، طراحی سیستم‌های پیش‌بینی خشکسالی است که بتوان اثرات مخرب ناشی از آن را به حداقل رساند. به این منظور در این تحقیق...

full text

پیش¬بینی جریان روزانه با استفاده از شبکه¬های عصبی مصنوعی و عصبی- موجکی (مطالعه موردی: رودخانه باراندوزچای)

پیش­بینی دقیق جریان در رودخانه­ها یکی از مهمترین ارکان در مدیریت منابع آبهای سطحی به ویژه جهت اتخاذ تدابیر مناسب در مواقع سیلاب و بروز خشکسالی­ها است. به دلیل اهمیت پیش­بینی جریان رودخانه، در این تحقیق جریان روزانه رودخانه­ی باراندوزچای در دو ایستگاه بی­بکران و دیزج طی یک دوره­ی آماری 20 ساله با استفاده از مدل عصبی- موجکی (WNN) که تلفیق آنالیز موجک و شبکه عصبی مصنوعی (ANN) می­باشد، پیش­بینی گرد...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 40  issue 1

pages  57- 68

publication date 2010-08-23

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023